Skip to content

Fitting nonlinear functions in R

Following up on a post by Markus Gesmann, I wanted to look at logistic growth curves with a known inflection point. This is an example of functional data analysis with widespread applications, such as population dynamics and pharmacokinetics. Mages’ blog looked at the dugongs data from a textbook (Ratkowsky, 1983), which was subsequently analysed by Carlin & Gelfand (1991) and included in Vol. II of the BUGS manual as well as the Stan user guide. Markus compared point estimates from the R function nlm() with Bayesian inference using Stan. The methods were in close agreement with each other, as well as with the Gibbs sampler of Carlin & Gelfand. This made me curious to explore beyond this simple example, building towards the generalised logistic function that is a solution to the ordinary differential equation (ODE) of Richards (1959).

Read more…

Toolchain for macOS Sierra

Previously, I’ve described my setup on Windows 7 and macOS 10.9.x (Mavericks). Now that I’ve got a new MacBook Air, it’s time to update these instructions for macOS 10.12.x (Sierra). The setup described below is quite minimal, since I have limited disk space. See the article by Bhaskar Karambelkar‏ for an install based on homebrew that has all the bells & whistles.

Read more…

Reading DICOM-RT in R using RadOnc

Previously I’ve written my own R code to access DICOM-RT structure sets in group 3006 of the meta-data. Shortly after I wrote that original post, Reid F. Thompson made his R package RadOnc available on CRAN. Unfortunately, my old code no longer works with the current version of the oro.dicom R package, therefore I would recommend using RadOnc instead. The code below is focused on importing the 3D geometry, but the R package has a lot of other features that you might find useful: for example, calculation of Dice similarity coefficient and Hausdorff distance; as well as import of dose-volume histograms (DVH).

Read more…


This is a follow up to my previous post about the Swendsen-Wang (SW) algorithm, where I mentioned that SW has better convergence properties than Gibbs when the inverse temperature parameter β is large. This difference can be quantified by initialising the two algorithms at known starting points and measuring how many iterations it takes to converge. This is the second in a series of posts describing the functions and algorithms that I have implemented in the R package bayesImageS, which is now available on CRAN.

Read more…

A case study in Bayesian computation using Rcpp and OpenMP

At the beginning of December, I presented a seminar for the PhD students of the joint Oxford-Warwick Centre for Doctoral Training (otherwise known as the OxWaSP CDT). My slides and abstract are below:

Read more…

bayesImageS available on CRAN

My R package was rejected the first time, due to an old bug in RcppArmadillo (details below). I also forgot to add ‘cran-comments.html’ to my .Rbuildignore after following Hadley Wickham’s otherwise excellent advice on how to develop a package for CRAN. The source package and Windows binaries are now available, with OS X soon to follow. Using R-hub was definitely helpful, since it allowed me to test my package on various flavours of Linux and versions of R before submitting it. The NOTEs didn’t come as a surprise, since running rhub::check_for_cran had already made me aware of them. Hopefully R-hub will add support for Mac OS and SPARC Solaris soon. My code has multiple compile errors in Solaris Studio 12.3, which would be painful to fix without access to a virtual machine. Continuous integration with Travis might also have been useful, but my code is hosted on Bitbucket not GitHub.

Read more…

R-hub on Mac OS X

Since I’ve been invited to give a seminar at an OxWaSP mini-symposium, I decided it was finally time to get my R package bayesImageS in shape for submission to the CRAN repository. Recently, the R-hub builder was released as a public beta. I was keen to check this out, since it is meant to make the process of submitting packages to CRAN simpler, particularly for first time package authors such as myself.

Read more…

Let's Look at the Figures

David Firth's blog

Nicholas Tierney

Computational Bayesian statistics

One weiRd tip

Computational Bayesian statistics

Series B'log

discussion blog for JRSS Series B papers

Mad (Data) Scientist

Musings, useful code etc. on R and data science


R news and tutorials contributed by (750) R bloggers

Another Astrostatistics Blog

The random musings of a reformed astronomer ...

Darren Wilkinson's research blog

Statistics, computing, data science, Bayes, stochastic modelling, systems biology and bioinformatics


Computational Bayesian statistics

StatsLife - Significance magazine

Computational Bayesian statistics

(badness 10000)

Computational Bayesian statistics

Igor's Blog

Computational Bayesian statistics


I can't get no

Xi'an's Og

an attempt at bloggin, nothing more...

Sam Clifford

Postdoctoral Fellow, Bayesian Statistics, Aerosol Science

Bayesian Research & Applications Group

Frontier Research in Bayesian Methodology & Computation