Skip to content

A case study in Bayesian computation using Rcpp and OpenMP

December 30, 2016

At the beginning of December, I presented a seminar for the PhD students of the joint Oxford-Warwick Centre for Doctoral Training (otherwise known as the OxWaSP CDT). My slides and abstract are below:

There are many approaches to Bayesian computation with intractable likelihoods, including the exchange algorithm, approximate Bayesian computation (ABC), thermodynamic integration, and composite likelihood. These approaches vary in accuracy as well as scalability for datasets of significant size. The Potts model is an example where such methods are required, due to its intractable normalising constant. This model is a type of Markov random field, which is commonly used for image segmentation. The dimension of its parameter space increases linearly with the number of pixels in the image, making this a challenging application for scalable Bayesian computation. My talk will introduce various algorithms in the context of the Potts model and describe their implementation in C++, using OpenMP for parallelism. I will also discuss the process of releasing this software as an open source R package on the CRAN repository.

From → R

Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s


Computational Bayesian statistics

Bayes' Food Cake

A bit of statistics, a bit of cakes. - Blogs to Learn R from the Community

Computational Bayesian statistics

Richard Everitt's blog

Computational Bayesian statistics

Let's Look at the Figures

David Firth's blog

Nicholas Tierney

Computational Bayesian statistics

Sweet Tea, Science

Two southern scientistas will be bringing you all that is awesome in STEM as we complete our PhDs. Ecology, statistics, sass.

Mad (Data) Scientist

Musings, useful code etc. on R and data science

Darren Wilkinson's blog

Statistics, computing, functional programming, data science, Bayes, stochastic modelling, systems biology and bioinformatics

(badness 10000)

Computational Bayesian statistics

Igor Kromin

Computational Bayesian statistics


I can't get no

Xi'an's Og

an attempt at bloggin, nothing more...

Sam Clifford

Postdoctoral Fellow, Bayesian Statistics, Aerosol Science

%d bloggers like this: